×

角动量守恒的应用,角动量守恒在哪些地方有体现呢?

admin admin 发表于2024-04-09 03:01:07 浏览26 评论0

抢沙发发表评论

本文目录一览:

角动量守恒的应用

1、一个旋转的陀螺,为什么不容易倒下呢?可以看到,陀螺旋转时只受过转轴的重力,是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去。
2、跳水运动中运动员跳落时,可以将其想象为一个下落的不停转动的车轮,此时她旋转的转轴垂直于她的旋转平面。她下落时只受过转轴的重力,满足角动量守恒定律条件。角动量公式有两个变量:动量臂r和速度v。跳水运动员将身体蜷缩使质量分布靠近质心动量臂减小,根据角动量不变,故转速增大;而接近水面时伸开身体使质量分布远离质心而减小转速,最终平稳地沿垂直方向进入水中以减小水花。
3、花样溜冰运动员和芭蕾舞演员作旋转动作,先将两臂和腿伸开,旋转起来后,把两臂和腿收回因为身体某些部分离轴近了,转速迅速增加;需要停止的时候,重新把两臂和腿伸开去,降低转速,运动员就平稳地停下来。

角动量守恒的实际应用

角动量守恒的实际应用
: 花样滑冰单脚点冰原地转圈。运动员伸开手臂则转速变慢,收缩手臂则转速变快。 直升飞机的尾翼,旋转的陀螺 导弹的导航

角动量守恒在哪些地方有体现呢?

有关角动量守恒的实际现象:
1、人走路现象
选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。
而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。注意,身体的角动量刚才还是顺时针,现在就变成了逆时针。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此,脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。
2、飞机尾翼
把整个直升飞机视为一个整体,并从整体对转动轴角动量守恒来解释。在飞机发动机未发动之前,直升飞机静止在地面上,整个物体系对转轴的角动量为零。当发动机发动,角动量增加,这时外力距由直升飞机的轮子与地面的摩擦力提供,满足角动量守恒定律。
3、陀螺仪
外环可绕垂直轴自由转动,内环可绕水平轴自由转动,回转仪安装在内环中,其转轴与内环转轴相垂直,三轴交于一点,并与陀螺仪的质心重合。
它可使回转仪的转轴在空间取任意方向,由于三转轴都通过质心,所以回转仪不受重力矩作用,因此回转仪高速旋转时,角动量保持不变,不论支架转到什么方位,回转仪的转轴始终保持不变。常平架陀螺仪具有转轴方向不变的特点,称为指示型陀螺,可以作为指示器。
扩展资料:
角动量守恒对人类有非常重要的意义,从日常生活到科技应用,角动量对人类文明做出了不可磨灭的贡献。在走路这样对我们来说再熟悉不过的举动中,竟然暗含着如此神奇的物理规律。
角动量守恒定律是指系统所受合外力矩为零时系统角动量保持不变;它描述的主要对象是物体的旋转运动,因此,它实质上对应着空间旋转的不变性。
例如,在开普勒运动中,当考虑到太阳系中行星受到太阳万有引力时,由于万有引力对太阳这个参考点力矩为零,所以它们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。另外,角动量守恒也是陀螺效应产生的原因。

角动量守恒有什么应用

  角动量守恒  角动量守恒,又称角动量守恒定律
是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变.dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.
  根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
  此原理多用于天文学,天体运行时自转不变.
  (1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量
,亦即 ,因而 .这时,物体绕定轴作匀角速转动.
  (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.
  (3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.

自然界里的角动量守恒有什么? 举例子,求回答,

纯粹的角动量守恒是难以存在的,毕竟会有一些阻力矩使得系统的角动量减小,但是忽略的话还是有几个常见例子的.
比如跳水运动员在空中加速翻滚的动作,运动员绕通过他质心的水平轴转动,为了减小这个轴的转动惯量,以加大转速,运动员在空中下肢收拢,双手抱膝,把身体尽量的卷曲起来,到了接近水面时,他便舒展四肢,把转动惯量变得最大,是角动量变得最小.
还有花样滑冰旋转时,宇宙中星体之间旋转运动等

物理中的角动量守恒怎样应用

你好, 物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。
角动量守恒定律
如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。
这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
详细内容
概述
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点
角动量原理图
(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
希望能帮到你。

角动量有什么用?例如?(自然科学)

角动量定义是:刚体的转动惯量和角速度的乘积,叫做刚体对转轴的角动量或者是叫动量矩。
角动量守恒定律是一条很有用的定律。
刚体转动的角动量守恒定律:在刚体转动时,如果受到的外力对轴的合外力矩为零(或不受外力矩作用),则刚体对同轴的角动量保持不变。
例如:人手持铁哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的重要例子。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。当人把两臂收回抱在胸前时,转动惯量减小了,但动量矩仍保持不变,所以转动速度就变快了。
花样滑冰、体操、跳水、芭蕾舞……中许多旋转动作都应用了这一定律。
自行车行走时,车轮转动,遵从动量矩守恒定律,只有受到足够大的外力距作用时,其动量矩才会改变——改变转轴的方向,所以,车轮转动得越快,自行车越不容易倾倒。所以“定车”需要较高的技巧;
杂技演员在表演车技时常常猛蹬几下,车速快了,他才在车上作各种技巧动作。
根据动量矩守恒定律,在不受到外力距作用时,保持它原来的转动方向,所以高速旋转物体的转轴具有定向性。由此做成了陀螺仪,在飞机、航海、航天技术中都离不开陀螺仪。

怎么利用角动量转椅子

如下:原来人坐在转椅上静止,整个系统的角动量为零,当伸开双臂把身体向右转时,就是一个向下的角动量,根据角动量守恒必有一个向上的角动量,所以椅子就会向左转.再比如舞蹈演员跳舞时,做旋转动作时,如果双手举起则转动加快,如果水平伸开双手则转动减慢,这也是角动量守恒的例子.

角动量守恒定理运用条件

对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。一般定理,不要什么条件,定律有一定的适用条件。
质点系的角动量定理:质点系对任一固定点O的角动量对时间的微熵等于作用于该质点系的诸外力对O点的力矩的矢量和。内力不能改变质点系的整体转动情况。
角动量守恒定律,条件--合外力矩等于零。
角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。