本文目录一览:
- 1、热力学三大定律
- 2、热力学三大定律是什么
- 3、热力学三大定律是什么?
- 4、热力学第三定律 内容
- 5、热力学第三定律的内容
- 6、热力学三定律是什么?
- 7、什么是热力学第三定律
- 8、热力学第三定律的内容是什么?
- 9、热力学三大定律内容
热力学三大定律
热力学三大定律如下:
1、第一定律:能量守恒定律。
2、第二定律:开尔文-普朗克表述,不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
3、第三定律:绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0K)不可达到。
热力学第一定律也就是能量守恒定律。自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,能量守恒定律就是一个普遍的基本规律。
能量既不能凭空产生,也不能凭空消灭,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转移和转化的过程中,能量的总量不变。
物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。
能的转化与守恒是分析解决问题的一个极为重要的方法,它比机械能守恒定律更普遍。例如物体在空中下落受到阻力时,物体的机械能不守恒,但包括内能在内的总能量守恒。
以上内容参考:百度百科-热力学三大定律
热力学三大定律是什么
01 第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡,这一结论就称为第零定律,是用来作为进行体系测量的基本依据
02 第一定律——就是不同形式的能量在传递与转换过程中守恒的定律,也就是说热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
03 第二定律——不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中 熵的微增量总是大于零,这就称作为第二定律。
04 第三定律——为绝对零度时,所有纯物质的完美晶体的熵值为零,这就称作第三定律
热力学三大定律是什么?
热力学三大定律分别是:
1、热力学第一定律:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
2、热力学第二定律:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。
3、热力学第三定律:热力学系统的熵在温度趋近于绝对零度时趋于定值。
扩展资料:
1、热力学第一定律本质上与能量守恒定律是的等同的,是一个普适的定律,适用于宏观世界和微观世界的所有体系,适用于一切形式的能量。
2、热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。
3、在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的意图。
4、热力学得到的结论与物质的具体结构无关,故在实际应用时还必须结合必要的被研究物质物性的实验观测数据,才能得到定量的结果,这是热力学研究的一个局限性。
参考资料:百度百科_热力学第一定律 百度百科_热力学第二定律 百度百科_热力学第三定律
热力学第三定律 内容
绝对零度(absolute zero)是热力学的最低温度,但此为仅存于理论的下限值。热力学温标的单位是开尔文(K),绝对零度就是开尔文温度标定义的零点。0K等于摄氏温标零下273.15度。物质的温度取决于其内原子、分子等粒子的动能。根据麦克斯韦-玻尔兹曼分布,粒子动能越高,物质温度就越高。理论上,若粒子动能低到量子力学的最低点时,物质即达到绝对零度,不能再低。然而,绝对零度永远无法达到,只可无限逼近。
热力学第三定律是对熵的论述,一般当封闭系统达到稳定平衡时,熵应该为最大值,在任何过程中,熵总是增加,但理想气体如果是等温可逆过程熵的变化为零,可是理想气体实际并不存在,所以现实物质中,即使是等温可逆过程,系统的熵也在增加,不过增加的少。 在绝对零度,任何完美晶体的熵为零;称为热力学第三定律
理论上所能达到的最低温度,在此温度下物体没有内能。把-273.15℃定作热力学温标(绝对温标)的零度,叫做绝对零度(absolute zero)。 热力学温标的单位是开尔文(K±)
宇宙中温度的下限,称作绝对零度。
物质的温度取决于其内原子、分子等粒子的动能。也就是我们常说的分子运动的剧烈程度,温度越高,分子运动越剧烈。温度越低,分子运动越缓慢。如果分子不运动,就达到了绝对零度。但是,分子又不停息的做无规则运动,所以,只能接近绝对零度,不能达到。绝对零度是理论上的值。
定义:不可能用有限个手段和程序使一个物体冷却到绝对温度零度。
热力学第三定律是对熵的论述,一般当封闭系统达到稳定平衡时,熵应该为最大值,在任何过程中,熵总是增加,但理想气体如果是绝热可逆过程熵的变化为零,可是理想气体实际并不存在,所以现实物质中,即使是绝热可逆过程,系统的熵也在增加,不过增加的少。 在绝对零度,任何完美晶体的熵为零;称为热力学第三定律。
定义:理论上所能达到的最低温度,在此温度下物体没有内能。把-273.15℃定作热力学温标(绝对温标)的零度,叫做绝对零度(absolute zero)。 热力学温标的单位是开尔文(K±)
补充:
①在中学阶段,对于热力学温标和摄氏温标间的换算,是取近似值T(K)=t(℃)+273。实际上,如以水的冰点为标准,绝对零度应比它低273.15℃所以精确的换算关系应该是T(K)=t(℃)+273.15。
②绝对零度是根据理想气体所遵循的规律,用外推的方法得到的。用这样的方法,当温度降低到-273.15℃时,气体的体积将减小到零。如果从分子运动论的观点出发,理想气体分子的平均平动动能由温度T确定,那么也可以把绝对零度说成是“理想气体分子停止运动时的温度”。以上两种说法都只是一种理想的推理。事实上一切实际气体在温度接近-273.15℃时,将表现出明显的量子特性,这时气体早已变成液态或固态。总之,气体分子的运动已不再遵循经典物理的热力学统计规律。通过大量实验以及经过量子力学修正后的理论导出,在接近绝对零度的地方,分子的动能趋于一个固定值,这个极值被叫做零点能量。这说明绝对零度时,分子的能量并不为零,而是具有一个很小的数值。原因是,全部粒子都处于能量可能有的最低的状态,也就是全部粒子都处于基态。
③由于水的三相点温度是0.01℃,因此绝对零度比水的三相点温度低273.16℃。
绝对零度表示那样一种温度,在此温度下,构成物质的所有分子和原子均停止运动。所谓运动,系指所有空间、机械、分子以及振动等运动.还包括某些形式的电子运动,然而它并不包括量子力学概念中的“零点运动”。除非瓦解运动粒子的集聚系统,否则就不能停止这种运动。从这一定义的性质来看,绝对零度是不可能在任何实验中达到的,但目前科学家已经在实验室中达到距离绝对零度仅百万分之一摄氏度的低温。所有这些在物质内部发生的分子和原子运动统称为“热运动”,这些运动是肉眼看不见的,但是我们会看到,它们决定了物质的大部分与温度有关的性质。 正如一条直线仅由两点连成的一样,一种温标是由两个固定的且可重复的温度来定义的。
为什么不能达到绝对零度?
物体的温度实际上就是原子在物体内部的运动。当我们感到一个物体比较热的时候,就意味着它的原子在快速运动:当我们感到一个物体比较冷的时候,则意味着其内部的原子运动速度较慢。我们的身体是通过热或冷来感觉这种运动的,而物理学家则是绝对温标或称开尔文温标来测量温度的。
按照这种温标测量温度,绝对温度零度(0K)相当于摄氏零下273.15度(-273.15℃)被称为“绝对零度”,是自然界中可能的最低温度。在绝对零度下,原子的运动完全停止了,并且从理论上讲,气体的体积应当是零。由此,人们就会明白为什么温度不可能降到这个标度之下,为什么事实上甚至也不可能达到这个标度,而只能接近它。
自然界最冷的地方不是冬季的南极,而是在星际空间的深处,那里的温度是绝对温度3度(3K),即只比绝对零度高3度。
这个“热度”(因为实际上我们谈到的温度总是在绝对零度之上)是作为宇宙起源的大爆炸留存至今的热度,事实上,这是证明大爆炸理论最显著有效的证据之一。
在实验室中人们可以做得更好,能进一步地接近于绝对零度,从上个世纪开始,人们就已经制成了能达到3K的制冷系统,并且在10多年前,在实验室里达到的最低温度已是绝对零度之上1/4度了,后来在1995年,科罗拉多大学和美国国家标准研究所的两位物理学家爱里克·科内尔和卡尔威曼成功地使一些铷原子达到了令人难以置信的温度,即达到了绝对零度之上的十亿分之二十度(2×10^-8 K)。他们利用激光束和“磁陷阱”系统使原子的运动变慢,我们由此可以看到,热度实际上就是物质的原子运动。非常低的温度是可以达不到的,而且还要以寻求“阻止”每一单个原子运动,就像打台球一样,要使一个球停住就要用另一个球去打它。弄明白这个道理,只要想一想下面这个事实就够了。在常温下,气体的原子以每小时1600公里的速度运动着,而在3K的温度下则是以每小时1米的速度运动着,而在20nK(2×10^-8 K)的情况下,原子运动的速度就慢得难以测量了。在20nK下还可以发现物质呈现的新状态,这在70年前就被爱因斯坦和印度物理学家玻色(1894~1974)预见了。
事实上,在这样的非常温度下,物质呈现的既不是液体状态,也不是固体状态,更不是气体状态,而是聚集成唯一的“超原子”,它表现为一个单一的实体。
热力学第三定律的内容
热力学第三定律的内容:热力学第三定律可表述为“在热力学温度零度(即T=0开)时,一切完美晶体的熵值等于零。
热力学第三定律(The third law of thermodynamics)是热力学的四条基本定律之一,其描述的是热力学系统的熵在温度趋近于绝对零度时趋于定值。而对于完整晶体,这个定值为零。由于这个定律是由瓦尔特·能斯特归纳得出后进行表述,因此又常被称为能斯特定理或能斯特假定。1923年,吉尔伯特·路易斯和梅尔·兰德尔对此一定律重新提出另一种表述。
随着统计力学的发展,这个定律正如其他热力学定律一样得到了各方面解释,而不再只是由实验结果所归纳而出的经验定律。
这个定律有适用条件的限制,虽然其应用范围不如热力学第一、第二定律广泛,但仍对很多学门有重要意义——特别是在物理化学领域。
热力学第三定律认为,当系统趋近于绝对温度零度时,系统等温可逆过程的熵变化趋近于零。第三定律只能应用于稳定平衡状态,因此也不能将物质看做是理想气体。绝对零度不可达到这个结论称做热力学第三定律。
热力学三定律是什么?
热力学三定律是:热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0K)不可达到。热力学第三定律是热力学的四条基本定律之一,其描述的是热力学系统的熵在温度趋近于绝对零度时趋于定值。而对于完整晶体,这个定值为零。由于这个定律是由瓦尔特·能斯特归纳得出后进行表述,因此又常被称为能斯特定理或能斯特假定。
热力学三定律原理简介:
热力学第三定律可表述为“在热力学温度零度(即T=0开)时,一切完美晶体的熵值等于零。”所谓“完美晶体”是指没有任何缺陷的规则晶体。据此,利用量热数据,就可计算出任意物质在各种状态(物态、温度、压力)的熵值。这样定出的纯物质的熵值称为量热熵或第三定律熵。
热力学第三定律认为,当系统趋近于绝对温度零度时,系统等温可逆过程的熵变化趋近于零。第三定律只能应用于稳定平衡状态,因此也不能将物质看做是理想气体。绝对零度不可达到这个结论称做热力学第三定律。
以上内容参考:百度百科-热力学第三定律
什么是热力学第三定律
热力学第三定律是指当一个系统的温度趋于绝对零度时,其熵趋于定值或保持不变。(这个定值为零)该定律预测了处于绝对零度时系统的性质和熵的变化规律。通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。或者绝对零度(T=0K即-273.15℃)不可达到。
热力学第三定律的内容是什么?
热力学的四个基本方程:dU=TdS-PdV;dH=TdS+VdP;dF=-SdT-PdV;dG=-SdT+VdP。
热力学(thermodynamics)是从宏观角度研究物质的热运动性质及其规律的学科。属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。热力学主要是从能量转化的观点来研究物质的热性质 ,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。
热力学
热力学并不追究由大量微观粒子组成的物质的微观结构,而只关心系统在整体上表现出来的热现象及其变化发展所必须遵循的基本规律。它满足于用少数几个能直接感受和可观测的宏观状态量诸如温度、压强、体积、浓度等描述和确定系统所处的状态。
通过对实践中热现象的大量观测和实验发现,宏观状态量之间是有联系的,它们的变化是互相制约的。制约关系除与物质的性质有关外,还必须遵循一些对任何物质都适用的基本的热学规律,如热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律 等。
热力学以上列从实验观测得到的基本定律为基础和出发点,应用数学方法,通过逻辑演绎,得出有关物质各种宏观性质之间的关系和宏观物理过程进行的方向和限度,故它属于唯象理论,由它引出的结论具有高度的可靠性和普遍性。
以上内容参考:百度百科——热力学
热力学三大定律内容
能量守恒定律、力学能转换定律、零度定律。热力学第一定律:能量守恒定律在热学形式的表现。热力学第二定律:力学能可所有转换成热能,可是热能却不能以有限次的实验操作所有转换成功。热力学第三定律:零度不可达到但能够无限趋近。热力学是从宏观角度研究物质的热运动性质及其规律的学科。属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。