本文目录一览:
- 1、概率论与数理统计知识点有哪些?
- 2、概率论与数理统计知识点小结
- 3、概率论与数理统计总结
- 4、概率论与数理统计
- 5、概率论与数理统计的公式及定义总结
- 6、概率论与数理统计重要考点分析
- 7、概率论与数理统计有什么重点和难点
- 8、概率论与数理统计重点(数学一)
- 9、概率论与数理统计——一、概率论的基本概念
概率论与数理统计知识点有哪些?
概率论与数理统计知识点有:
1、随机变量:对事件发生的各个结果联系数字进行定义,创造出一个随着结果不同而变化的实值单值函数就是随机变量。
2、频率与概率:频率在试验趋于无穷时等于概率。概率具有非负性,可列可加性。
3、中心极限定理:大量随机因素(变量)共同作用下(构成统计量)的分布近似于正态分布。
4、区间估计:本质依然是通过样本估计未知参数,构造枢轴量(不依赖未知参数确定分布类型的统计量)。
5、分布函数和概率密度:分布函数和分布率体现出随机变量取不同值时的概率,概率密度体现出随机变量取值的密集成程度。
概率论与数理统计知识点小结
全概率公式
贝叶斯公式
排列组合(只能刷题了)
公式:
重复组合,又放回的抽r次:
随机变量分布及统计量
分布函数
性质:1)单调不减 2) ; 3) 右连续
期望:
方差:
协方差:
相关系数:
切比雪夫不等式
伯努利大数定律 :随着n增大,频率与概率有较大偏差的可能性越来越小
中心极限定理 :对独立同分布随机变量序列(这个共同分布可以是离散的、连续的、正态的、非正态的),只要其共同分布的 方差存在,且不为0 ,那么这n个独立同分布的随机变量之和的分布 渐进近似 于正态分布。
简单随机样本 : iid
统计量 :随机变量的函数(不含参数),也是随机变量
三大抽样分布
分布: 。其中 为自由度
分布: 。其中 为自由度
F 分布: 。其中
矩估计
? 多个参数需要多阶矩: 最大似然估计 评选标准
无偏性
? 其中 带回可得
有效性 相合性 : 依概率收敛于
拟合优度检验 :样本是否来自某个分布 ,主要思想是当X来自分布F(x),那么事件的频率与概率的差值不会太大。因此构造统计量: 第一类错误与第二类错误 :因为是控制第一类错误的概率 ,因此 是受到保护的,不轻易拒绝原假设。一般选两类错误中后果严重的错误为第一类错误。如果两类错误没有哪一类更严重,常常取 维持现状。
ANOVA(方差分析) :可以用来比较多组总体的均值
概率论与数理统计总结
1.1.1 随机现象:
概率论与数理统计的研究的对象就是随机现象,随机现象就是在一定的条件下不总是出现相同的结果的现象,也就是不能肯定的确定结果的现象就统称为随机现象。现实生活中有很多的随机现象比如同一学校统一专业的学生考上研究生的现象就是随机现象,你不能说哪一个学生肯定能够考上某所学校但是你能根据这所学校往年的数据估算出这所学校的考研率,在一定程度上也就能够大致估算出这所学校某某同学考上研究生的可能性有多大,当然一个学生能不能考上研究生与这所学校的考研率并没有必然的联系因为是随机的具有不确定性,但有一定的相关程度在里面。整个概率论研究的就是随机现象的模型(概率分布),而概率分布则是能够用来描叙某随机现象特征的工具。有阴就有阳,有了随机事件自然与之对应的就是确定性现象(如太阳每天东升西落)
1.1.2 样本空间:
随机现象一切可能 基本结果 所构成的集合则称为样本空间,其集合内的元素又称为样本点,当样本点的个数为可列个或者有限个的时候就叫做离散型样本空间,当样本点的个数为无限个或者不可列个的时候就叫做连续型样本空间。( 可列个的意思是可以按照一定的次序一一列举出来,比如某一天内到达某一个商场内的人数都是整数1,2,3。。。。,这叫可列个,不可列个的意思比如电视机的寿命,有100.1小时的有100.01小时的有100.0001小时的,你永远不能按照次序列举出比一百小的下一个元素到底是哪一个,这就叫不可列)。
1.1.3 随机事件:
随机现象某些样本点组成的集合叫做用一个 随机事件 ,也就是说随机事件是样本空间的一个子集,而样本空间中单个元素所组成的集合就叫做 基本事件 ,样本空间自身也是一个事件叫做 必然事件 ,样本空间的最小子集也即空集就叫做 不可能事件
1.1.4 随机变量:
用来表示随机现象结果的变量称为 随机变量 ,随机变量的取值就表示随机事件的结果,实际上随机事件的结果往往与一个随机变量的取值可以一一对应
1.1.5 随机事件之间的运算与关系:
由于我们将随机事件定义成一个集合事件间的运算也可看作是集合间的运算,集合间的诸运算如交集、并集、补集、差集等运算随机事件之间也有,而且运算规则一致。集合间的包含、相等、互不相容、对立,事件之间也有,随机事件间的运算性质满足交换律、结合律、分配率、德摩根定律。
1.1.6 事件域:
事件域为样本空间的某些子集所组成的集合类而且满足三个条件,事件域中元素的个数就是样本空间子集的个数,比如一个有N个样本点的样本空间那么他的事件域就有 个元素,定义事件域主要是为了定义事件概率做准备。
概率论中最基本的一个问题就是如何去确定一个随机事件的概率,随机事件的结果虽然具有不确定性,但是他发生的结果具有一定的规律性(也即随机事件发生可能性的大小),而用来描叙这种规律性的工具就是概率,但是我们怎么样来给概率下一个定义嘞?如何度量描叙事件发生可能性的大小嘞?这是一个问题。
在概率论的发展史上针对不同的随机事件有过各种各样的概率定义,但是那些定只适用于某一类的随机事件,那么如何给出适合一切随机现象概率的最一般的定义嘞?1900年数学家希尔伯特提出要建立概率的公理化定义,也就是建立一个放之四海而皆准的满足一切随机事件的概率的定义,用概率本质性的东西去刻画概率.1933年前苏联数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这个定义既概括了历史上几种概率的定义中的共同特性,又避免了各自的含混不清之处,不管什么随机现象只有满足该定义中的三条公理,才能说明他是概率,该定义发表之后得到了几乎所有数学家的一致认可。(说点题外话,如果某位数学工作者提出了某个重大的发现,首先需要写论文获得学术圈内的人士一致认同他的这个发现才能够有可能被作为公理写进教科书,之所以被称作公理就因为它既是放之四海而皆准的准则也是公认的真理)。
1.2.1 概率的三条公理化定义:
每一个随机事件其背后必定伴随着有她的样本空间(就像有些成功的男人背后都有一位贤内助),每一个随机事件都属于样本空间的事件域,样本空间的选取不同对同一个随机事件而言其概率通常也会不同。
如果概率满足以上三条公理则称有样本空间、事件域、概率所组成的空间为概率空间,满足以上三条公理的概率才能称之为概率。
概率的公理化定义并没有给出计算概率的方法因此知道了什么是概率之后如何去确定概率就又成了一个问题。
1.2.2 确定概率的频率方法:
确定概率的频率方法应用场景是在能够大量重复的随机实验中进行,用频率的稳定值去获得概率的估算值的方法思想如下:
为什么会想到用频率去估算概率嘞?因为人们的长期实践表明随着试验次数的增加,频率会稳定在某一个常数附近,我们称这个常数为频率的稳定值,后来的伯努力的大数定律证明了其稳定值就是随机事件发生的概率,可以证明频率一样满足概率的三条公理化定义由此可见频率就是“伪概率”。
1.2.4 确定概率的古典方法:
古典问题是历史上最早的研究概率论的问题,包括帕斯卡研究的骰子问题就是古典问题,他简单直观不需要做大量的试验我们就可以在经验事实的基础上感性且理性的分析清楚。
古典方法确定概率的思想如下:
很显然上叙古典概率满足概率的三条公理化定义,古典概型是最古老的确定概率的常用方法,求古典概率归结为求样本空间样本点的总数和事件样本点的个数,所以在计算中常用到排列组合的工具。
1.2.5 确定概率的几何方法:
基本思想:
1.2.6 确定概率的主观方法:
在现实世界中一些随机现象是无法进行随机试验的或者进行随机试验的成本大到得不偿失的地步,这时候的概率如何确定嘞?
统计学界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性的个人信念,这样给出的概率就叫做主观概率,比如我说我考上研究生的概率是百分之百(这当然有吹牛的成分在里面,但是里面有也包含了自信和自己对自己学习情况的了解以及自己对所报考院校的了解),比如说某企业家说根据它多年的经验和当时的一些市场信息认为某项新产品在市场上畅销的可能性是百分之80(这种话如果是熟人在私下里跟你说你还可以相信但是也要小心,如果是陌生人当着很多人的面说的你会相信吗?傻X才相信对不对?这么畅销你自己为什么不去做还把蛋糕分给老子?)。主观概率就是人们根据实际情况对某件事情发生的可能性作出的估计,但是这种估计的好坏是有待验证的。
这个理解了都不用特意去记要用的时候信手捏来,我是个很勤快的人其他公式都懒得记懒得写了。。。。下面只分析条件概率、全概率公式、贝叶斯公式:
1.3.1 条件概率:
所谓条件概率就是在事件A发生的情况下B发生的概率,即A B为样本空间 中两两事件若P(B)>0则称:
为在B发生的前提下A发生的条件概率,简称条件概率。
这个公式不难理解,实际上上面公式 也就是说“ 在B发生的条件下A发生的概率等于事件A与事件B共有的样本点的个数比上B的样本点的个数”,而且可以验证此条件概率满足概率的三条公理化定义。
1.3.2 乘法公式:
1.3.3 全概率公式:
设 为样本空间 的一个分割,即 互不相容,且 ,如果 则对任一事件A有:
这个公式也是很好理解的因为诸 互不相容而且其和事件为样本空间,故A事件中的样本点的个数等于A与诸 中共有样本点的和。
1.3.4 贝叶斯公式:
贝叶斯公式是在全概率公式和乘法公式的基础上推得的。
设若 为样本空间的一个分割,即 互不相容,且 如果 则:
公式的证明是根据条件概率来的,然后在把分子分母分别用乘法公式和全概率公式代替即可,公式中的 一般为已知概率称之为 先验概率 公式中 则称之为 后验概率 ,全概率公式和乘法公式为由原因推结果,而贝叶斯公式则为由结果推原因。
1.3.5 事件独立性:
上面我们介绍了条件概率这个概念,在条件A下条件B发生的概率为 ,如果B的发生不受A的影响嘞?直觉上来讲这就将意味着
故引入如下定义对任意两个事件A,B若 则称事件A与事件B相互独立
除了两个随机事件相互独立满足的定义当然也会有多个随机事件独立满足的定义,对N随机事件相互独立则要求对事件中的任意 个随机事件都相互独立.
1.3.6 伯努利概型:
定义:如果实验E只有两种可能的结果: ,然后把这个试验重复n次就构成了n重伯努利试验或称之为伯努利概型.显然每次伯努利试验事件结果之间是相互独立互不影响的,则伯努利试验显然是服从二项分布的,之后再介绍二项分布。
1.4.1 离散型随机变量:
之前说过用来表示随机现象结果的变量称之为随机变量,如抛掷一枚骰子随机变量的取值可以为1,2,3….显然此时随便试验的结果与随机变量的取值是一一对应的,于是我们将研究随机试验结果的统计规律转化为研究随机变量取值的统计规律,这种对应关系是人为的建立起来的同时也是合理的,只取有限个或者可列个值时候的随机变量则称之为离散型随机变量。
1.4.2 随机变量的分布列:
将随机变量的取值与其对应取值的可能性大小即概率列成一张表就称之为分布列,分布列使得随机变量的统计规律一目了然也方便计算其特征数方差和均值。分布列满足如下两个性质:
满足以上两个性质的列表则称之为分布列
1.4.3 分布函数:
设若X为一个随机变量,对任意的实数x,称 为随机变量X的分布函数记为 .
分布函数满足以下三个性质:
以上上个性质是一个函数能否成为分布函数的充要条件。
1.4.4 数学期望和方差:
先来看一个例子,某手表厂在出产的产品中抽查了N=100只手表的日走时误差其数据如下:
这时候这100只手表的平均日走时误差为: 其中 是日走时误差的频率记做 则
平均值 即平均值为频数乘以频率的和,由于在 时频率稳定于概率,于是在理论上来讲频率应该用概率来代替,这时我们把频率用概率来代替之后求出的平均值称之为数学期望(实际上由后面的大数定律可得平均值也稳定于数学期望),数学期望在一定程度上反映了随机变量X结果的平均程度即整体的大小,我们记为 。
定义:设X是一个随机变量X的均值 存在 如果 也存在则称之为随机变量X的方差记为 .
显然方差也是一个均值那么他是什么的均值嘞? 表示随机变量的均值离差, 由随机变量平均值的离差和等于零我们可以推的随机变量均值的离差和也等于零故均值离差和的均值 也等于零,但是我们希望用离差来刻画不同分布间的差别如果用均值离差和的均值那么任何分布都为零,于是我们将离差加上一个平方变成 这样避免了离差和为零。那么方差这个表示分布特征的数又有什么重要意义嘞?很多人看似学完了概率统计,但是居然连方差的意义都没有搞清楚,实际上方差是用来刻画数据间的差异的,而刻画数据间的差异无论是在空间上的向量还是在平面上的点,用距离来刻画他们之间的差异是再好不过的。在物理学上要想正确合理的比较两动体的速度加速度我们就需要选取合适的参考系来进行对比,同样在比较数据间的差异的时候我们也往往用均值来做他们的参考(实际上其他的值也可以用来进行比较,但是那可能造成方差过大的现象),与均值的距离越大说明他们的差异也越大,而距离又有正负之分因此为了区别正负我们也需要把与均值的距离加上一个平方,这也就是方差概念的来源。我们通常用方差来描叙一组数据间的差异,方差越小数据越集中,越大数据越分散,同时在金融上面也用来评估风险比如股价的波动性,我们当然希望股价的波动越是平稳即方差越小、收益越稳定越好。
因为均值和方差描叙了随机变量及其分布的某些特征因此就将其称之为特征数.
1.4.5 连续型随机变量的密度函数:
连续型随机变量的取值可能充满某一个区间为不可列个取值,因此描叙连续型随机变量的概率分布不能再用分布列的行时呈现出来,而要借助其他的工具即概率密度函数。
概率密度函数的由来:比如某工厂测量一加工元件的长度,我们把测量的元件按照长度堆放起来,横轴为元件的单位长度,纵轴为元件单位长度上的频数,当原件数量很多的时候就会形成一定的图形,为了使得这个图形稳定下来我们将纵坐标修改为单位长度上的频率,当元件数量不断增多的时候由于频率会逐步稳定于概率,当单位长度越小,原件数量越多的时候,这个图形就越稳定,当单位长度趋向于零的时候,图形就呈现出一条光滑的曲线这时候纵坐标就由“单位长度上的概率”变为“一点上的概率密度”,此时形成的光滑曲线的函数 就叫做概率密度函数,他表现出x在一些地方取值的可能性较大,一些地方取值的可能性较小的一种统计规律,概率密度函数的形状多种多样,这正是反映了不同的连续随机变量取值统计规律上的差别。
概率密度函数 虽然不是密度但是将其乘上一个小的微元 就可得小区间 上概率的近似值,即
微分元的累计就能够得到区间 上的概率,这个累计不是别的就是 在区间 上的积分 = .
由此可得x的分布函数 ,对于连续型随机变量其密度函数的积分为分布函数,分布函数求导即为密度函数
密度函数的基本性质:
1.4.6 连续型随机变量的期望和方差:
设若随机变量X的密度函数为 .
数学期望:
方差:
1.4.7 切比雪夫不等式(Chebyshev,1821-1894):
设随机变量X的数学期望和方差都存在,则对任意常数 有:
.
之所以有这个公式是因为人们觉得事件{ }发生的概率应该与方差存在一定的联系,这个是可以理解的,方差越大在某种程度上说明 X的取值偏离 越厉害即说明偏离值大于某个常数a的取值越多因此取值大于某个值的概率也越大,上面公式说明大偏差发生概率的上界与方差有关,方差越大上界也越大。
1.4.8 常用离散型分布:
1.4.9 常用的连续型分布:
概率论与数理统计
第一章随机事件与样本空间,进行随机试验得到试验结果,全部样本点组成样本空间,样本全体引入子集,引入随机事件,引入事件概率,概率计算有古典概型和n 重伯努利试验。
这是几百年前概率论的发展。它最大的发展是引进入微积分,进入第二章——随机变量及其分布。
把样本空间的全体引入一个函数——随机变量random viable, 用这个函数来表示随机事件,引入分布函数,分为离散型和连续型,这两种随机变量的定义和性质有所不同,其中它们所谓的重要条件就是概率的性质在新的条件下的反映。其中连续型随机变量的分布函数用积分来表示,求导成为概率密度函数,由此概率论引进微积分。
掌握常考分布——B P U E N (二项分布、泊松分布、均匀分布、指数分布、正态分布)的称呼、定义、记号、参数、特点。
1、要概念清楚
概率得不出事件结论,概率为0的事件不一定是空集,概率为1的事件不一定是全集;
独立bar不bar没关系;
概率为0或1的事件与所有事件都独立。
2、重点是条件概率(缩减样本空间)、五大公式(全概率和贝叶斯公式设完备事件组的设法)、n重伯努利实验。
完成第二章随机变量及其分布,第三章开始。
第二章重点有三。总结如下。
一、概率、分布函数、离散型随机变量、连续型随机变量的定义、重要条件及其他性质的一张比较表;后四者所谓的重要条件实际上是概率性质在新形势下的反映。
二、五个常考分布:二项分布是n重伯努利试验成功k次的概率;泊松分布描述如校门口1小时内通过多少辆车的概率;均匀分布如四舍五入、等公交车、等电梯的时间分布;指数分布描述生命、寿命的分布,无记忆性;正态分布也是比较常用的。
求概率时,均匀分布量尺寸,正态分布四下子(查表、标准化、对称性、定参数),只有指数分布会用到积分计算。背过两个积分公式——泊松积分和伽马函数。
三、一维随机变量函数的分布。三件事情处理好拿11分大题——定义、范围、端点。
把任何一个分布函数拿来,把随机变量塞到它自己的分布函数里面去,把小变量变成大的随机变量,出来新的随机变量一定服从0-1分布。
第三章 二维随机变量总结。
1、二维随机变量常考分布:均匀、正态。二维均匀量尺寸,二维正态一定是用对称性
2、二维随机变量函数的分布。三种情况:离散和离散的拆开;连续和连续的哪儿求概率哪儿求积分;离散和连续的把离散的用全概率公式展开。
3、二维离散、连续型随机变量的独立和条件概率。
二维离散型随机变量独立:行(列)之间成比例;条件概率:行(列)内部按比例分配,条件概率等于1/2时,两个概率相等。
二维连续型随机变量有两个相逆的题型:
已知二维连续型随机变量的联合概率密度函数求边缘概率密度和条件概率密度,把“大其他”变成“小其他”,其中求条件概率密度一定要注意范围,分母大于0才存在;或者反过来,已知一个边缘概率密度和一个条件概率密度,求联合概率密度,此时要注意求的全平面内的联合概率密度,所以要把约束条件去掉,用密度积分为1去掉条件,即通过积分等于1把“小其他”变成“大其他”。
总结第四章 数字特征。
重点有三。
1、期望、方差、协方差、相关系数的定义与性质。
为什么叫"期望"而不是"平均"?因平均都是有限个数之间,期望是无限个数。求期望三个方法:定义、对称性、性质。
方差是偏离平均值的程度、分散程度。
协方差描述两随机变量间的差异程度。求协方差要先暴露两个变量之间的关系。
相关系数是标准化了的期望,纯粹反映它们之间的差别。二维随机变量若服从0-1分布,求相关系数可在分布律上"抠右脚",若二维离散随机变量不服从0-1分布,照样按照0-1分布"抠右脚"(常熟不影响)。
计算上述量一定要选择好方法;做题前形成如下习惯:看两随机变量独立否?对称否?联合密度函数?计算积分繁琐,能用对称尽量对称。
2、五个常考分布的期望和方差。几何分布与超几何分布的参数推导,无需背。
一维正态记四下子,二维正态分布也有四点性质。其中,二维正态保证每个边缘都正态,反过来,边缘正态不能保证二维正态。
3、二维随机变量函数的期望。
总结第五章——大数定律和中心极限定理。
这章出题概率不大。有三点内容。
1、切比雪夫不等式。
2、大数定律。依概率收敛的概念引出切比雪夫大数定律、辛钦大数定律、伯努利大数定律(上面两个的特例),总结如下:若"X i 不相关,方差有界"或"Xi 独立同分布,期望存在",则Xi 的算术平均值依概率收敛于Xi 期望的算术平均值。
3、中心极限定理。Xi 独立同分布、方差存在,则Xi 的和近似服从正态分布。
第六章 数理统计。内容有二。
1、总体与样本。总体有分布函数、概率分布、概率密度,相应样本有分布函数、分布律、概率密度。
2、抽样分布。
样本数字特征:样本均值和样本方差及它们各自的期望、方差。
三大抽样分布的典型模式。(概率论中只有一个地方涉及4次方——卡方分布的方差。)
正态总体条件下样本均值与样本方差的分布。
第七章 参数估计。
矩估计和最大似然估计。
概率论与数理统计的公式及定义总结
概率论与数理统计是考研数学重要组成部分。概率论与数理统计非常强调对基本概念、定理、公式的深入理解。重要基本知识要点如下:
概率论与数理统计是考研数学重要组成部分。概率论与数理统计非常强调对基本概念、定理、公式的深入理解。重要基本知识要点如下:
一、考点分析
1.随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。
2.随机变量及其概率分布,包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。
概率论与数理统计是考研数学重要组成部分。概率论与数理统计非常强调对基本概念、定理、公式的深入理解。重要基本知识要点如下:
一、考点分析
1.随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。
2.随机变量及其概率分布,包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。
3.二维随机变量及其概率分布,包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。
4.随机变量的数字特征,随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。
5.大数定律和中心极限定理,以及切比雪夫不等式。
6.数理统计基本概念,包括总体与样本;样本函数与统计量;样本分布函数和样本矩。
7.参数估计,包括点估计;估计量的优良性;区间估计。
8.假设检验,包括假设检验的基本概念;单正态总体和双正态总体的均值和方差的假设检验。
二、解题思路
1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。
2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。
3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。
4.若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。
5.求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令
8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。
概率论与数理统计重要考点分析
1、随机事件和概率
2、随机变量及其概率分布
3、二维随机变量及其概率分布
4、随机变量的数字特征
5、大数定律和中心极限定理
6、数理统计的基本概念
7、参数估计
8、假设检验
对于上面每一部分的“基本内容与重要结论”要重点掌握(而不是一般的了解);第二,学会题目的分析方法;第三,完成一定量的习题。
根据每个人对基本概念理解程度的不同,应以确保重点、兼顾一般的方法进行复习。为了配合考生的复习,我们根据历年考试的情况将8部分内容的考核点分为重点考核点、次重点考核点及一般考核点一一列出。
第一部分:随机事件和概率
(1)样本空间与随机事件
(2)概率的定义与性质(含古典概型、几何概型、加法公式)
(3)条件概率与概率的乘法公式
(4)事件之间的关系与运算(含事件的独立性)
(5)全概公式与贝叶斯公式
(6)伯努利概型
第二部分:随机变量及其概率分布
(1)随机变量的概念及分类
(2)离散型随机变量概率分布及其性质
(3)连续型随机变量概率密度及其性质
(4)随机变量分布函数及其性质
(5)常见分布
(6)随机变量函数的分布
第三部分:二维随机变量及其概率分布
(1)多维随机变量的概念及分类
(2)二维离散型随机变量联合概率分布及其性质
(3)二维连续型随机变量联合概率密度及其性质
(4)二维随机变量联合分布函数及其性质
(5)二维随机变量的边缘分布和条件分布
(6)随机变量的独立性
(7)两个随机变量的简单函数的分布
第四部分:随机变量的数字特征
(1)随机变量的数字期望的概念与性质
(2)随机变量的方差的概念与性质
(3)常见分布的数字期望与方差
(4)随机变量矩、协方差和相关系数
第五部分:大数定律和中心极限定理
(1)切比雪夫不等式
(2)大数定律
(3)中心极限定理
第六部分:数理统计的基本概念
(1)总体与样本
(2)样本函数与统计量
(3)样本分布函数和样本矩
第七部分:参数估计
(1)点估计
(2)估计量的优良性
(3)区间估计
第八部分:假设检验
(1)假设检验的基本概念
(2)单正态总体的均值和方差的假设检验
(3)双正态总体的均值和方差的假设检验
最近几年数学一考试重点内容的顺序是:①二维随机变量及其概率分布;②随机变量的数字特征;③随机事件和概率;④数理统计。
最近几年数学三考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④数理统计。
最近几年数学四考试重点内容的顺序是:①随机变量的数字特征;②二维随机变量及其概率分布;③随机事件和概率;④大数定律和中心极限定理。
概率论与数理统计有什么重点和难点
概率的基本公式大全:
1、条件概率:P(B|A)=P(AB)/P(A);
2、贝叶斯公式:P(Bi|A)=P(A|Bi)P(Bi)/∑nj=1P(A|Bj)P(Bj);
3、全概率公式:P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(Bn);
4、乘法定理:P(AB)=P(B|A)P(A)
《概率论与数理统计》内容包括初等概率计算、随机变量及其分布、数字特征、多维随机向量、极限定理、统计学基本概念、点估计与区间估计、假设检验、回归相关分析、方差分析等。书中选入了部分在理论和应用上重要,但一般认为超出本课程范围的材料,以备教者和学者选择。
《概率论与数理统计》着重基本概念的阐释,同时,在设定的数学程度内,力求做到论述严谨。书中精选了百余道习题,并在书末附有提示与解答。《概率论与数理统计》可作为高等学校理工科非数学系的概率统计课程教材,也可供具有相当数学准备(初等微积分及少量矩阵知识)的读者自修之用。
概率论和数理统计都是数学中非常重要的分支,它们的重点和难点如下:
概率论的重点:
1. 随机变量及其分布:掌握离散随机变量、连续随机变量的基本性质,以及各种分布函数的概念和特征。
2. 大数定律与中心极限定理:了解大数定律和中心极限定理的概念和证明方法,对于随机过程的稳定性和收敛性有深刻的认识。
3. 马尔科夫链和随机游走:理解马尔科夫链和随机游走等随机过程的基本概念、模型及应用,并学习求解和评价这些模型的方法。
概率论的难点:
1. 概率的初步认识:对于初学者来说,理解概率的概念和公式可能比较困难。
2. 随机变量与分布:掌握不同类型的随机变量及其分布并不容易,需要理解一些抽象的数学概念。
3. 数学推导和计算:概率论中通常需要进行大量的数学推导和计算,涉及到高等数学知识,需要有扎实的数学功底。
数理统计的重点:
1. 参数估计与假设检验:理论地推导各种参数估计方法,掌握常见的假设检验原理和方法。
2. 方差分析与回归分析:学习方差分析原理及其在试验设计中的应用,了解回归分析和相关分析的基本思想以及特点。
3. 非参数统计方法:明白什么是非参数统计方法及其基本思想和应用领域。
数理统计的难点:
1. 抽样误差与实证研究设计:抽样误差会对统计结果产生显著的影响,而合适的实验或者数据采样设计能够有效地减少抽样误差。
2. 数据处理与模型构建:统计分析需要大量的数据处理工作,包括数据预处理、缺失值填充、异常值处理等,同时模型构建细节也涉及一系列难题,如变量的选择、模型的评价等。
3. 统计软件使用:统计分析通常需要使用一些专业的统计软件进行。熟练掌握相应统计软件的操作和编程语言也是一个难点。
概率论与数理统计重点(数学一)
概率论与数理统计
一、随机事件和概率
考试内容:
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验。
考试要求:
1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。。
二、随机变量及其分布
考试内容:
随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求:
1、理解随机变量的概念。理解分布函数的概念及性质。会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用。
3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。
5、会求随机变量函数的分布。
三、多维随机变量及其分布
考试内容:
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求:
1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质。 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度。会求与二维随机变量相关事件的概率。
2、理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。
3、掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义。
4、会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。
解析: 2008年数一大纲对随机变量的定义进行了一些说法上的修订:
1、这部分定义上的更正,完全是对原先大纲语言表述上的完善,没有增加任何的新的要求和知识点,反而从另一个角度讲,这种规范有利于我们在做题以及理解上的惯性,使我们较快较准地识别各种随机变量的特征,比如一看到马上反映到以为参数的泊松分布,不容易产生混淆。所以我们在解题时也能继承随机变量的这种表示风格,不要随便自我创造,增加混淆度。
四、随机变量的数字特征
考试内客:
随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 矩、协方差 相关系数及其性质
考试要求:
1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2、会求随机变量函数的数学期望。
五、大数定律和中心极限定理
考试内容:
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求:
1、了解切比雪夫不等式。
2、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
3、了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
2、了解产生分布 变量、变量和变量的典型模式;理解标准正态分布、 分布、分布和分布的 分位数,会查相应的数值表。
解析:2008年数一大纲对分位数的计算要求进行了一些修订:
1、这部分更正,没有增加任何的新的要求和知识点,反而降低了要求,因为对于分位数有上侧分位数,还有下侧分位数,这种限制明确了我们的复习范围和要求,不容易产生混淆,我们只需要掌握解题方法,针对提到的几种分布会熟练计算其上侧分位数,保证计算准确度即可。
3、掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布。
4、理解经验分布函数的概念和性质,会根据样本值求经验分布函数。
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 似然估计法 估计量的评选标准 区间估计的概念 单个正态总体均值的区间估计 单个正态总体的方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1、理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。
2、掌握矩估计法(一阶、二阶矩)和似然估计法。
3、掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法。
4、掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法。
八、假设检验
考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1、理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验。
2、理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率。
3、掌握单个及两个正态总体的均值和方差的假设检验。
概率论与数理统计——一、概率论的基本概念
确定性现象 :在一定条件下必然发生 统计规律性 :在某一事件中,大量重复试验或观察中呈现出的固有规律性 随机现象 :在个别实验中其结果呈现出不确定性,在大量重复实验中其结果又具有统计规律性的现象。 随机实验具有以下特点:
样本空间、样本点
频率描述事件发生的频繁程度,进而引出表征事件在一次实验中发生的可能性大小的数——概率