本文目录一览:
- 1、什么是脉冲星?
- 2、脉冲星的发现者是().
- 3、脉冲星指的是什么 脉冲星介绍
- 4、脉冲星是什么意思
- 5、脉冲星是什么 属于哪种天体
- 6、脉冲星的密度高达10亿吨立方厘米,这是真的吗?
- 7、脉冲星是哪种天体
- 8、脉冲星是哪种天体?
- 9、脉冲星指的是什么?
- 10、脉冲星是什么?
什么是脉冲星?
脉冲星(pulsar)
全称射电脉冲星。一种类型的天体,能发射极其规则的射电脉冲,其中几个还有短节奏的可见光激变、X射线和γ射线暴。脉冲星被公认是快速自旋的中子星。中子星是一种几乎整体均由中子组成的极端致密的恒星,其直径仅20公里,甚至更小些。当超新星激烈爆发后,其内核向内坍缩,即形成为中子星。恒星表面处的中子衰变成质子和电子,这些荷电粒子从恒星表面释放出来,即进入环绕恒星并随恒星自转的强磁场之中。这些粒子被加速到接近光速,便产生称为同步加速辐射的电磁辐射。这种辐射从脉冲星的磁极处以强射束形式被释放出去。磁极并不和自转极吻合一致,因此,脉冲星的自转致使射束旋转摆动。每当脉冲星自转一周,射束便会有规则地扫过地球,这时地面望远镜即可检测出一系列间断的脉冲。利用专门设计用以记录射电源快速起伏的射电望远镜,科学家们于1967年发现了第一个脉冲星,迄今已探测到300多个脉冲星。这类天体的很大一部分都朝向银河系的银道面集聚。虽然所有已知脉冲星均有此类特征,但它们的周期长短,即两个相继出现的脉冲之间的间隔却有很大不同。迄今已观测到的最慢的脉冲星的周期间隔为4秒,而1982年发现的最快的脉冲星的周期是0.00155秒,即1.55毫秒,比已知的任何一个脉冲星的周期都短了许多。这个毫秒脉冲星每秒自旋642圈,已经接近脉冲星自旋速度的极限。因为一个中子星只要自旋速度为此速度的4倍,就会作为其赤道带离心力造成的结果而飞散崩溃,哪怕其引力十分强大,可使其逃逸速度达到光速的一半。精确的射电脉冲星计时表明,它们的自转正在很缓慢地减速,其典型速率是每年减慢一百万分之一秒。根据一个脉冲星速度变化,可以计算出它的年龄。
在光学照片上,蟹状星云脉冲星呈现为蟹状星云中心的一个中等亮度(16星等)的星。科学家发现在可见光波段也有完全精确一致速率的光波闪烁。般帆脉冲星则要暗淡得多,平均为24星等。船帆脉冲星是星空中最强的γ射线源之一。年龄较老的射电脉冲星周期减慢的速率要比年轻的慢,脉冲周期也长。根据研究,已测定出脉冲星在历经约1000万年后随着其磁场的明显变弱,脉冲星的脉冲终将停止。在太阳附近空间探测出的脉冲星的数目表明,在银河系中活跃的脉冲星有上百万个。据推论,每10年应有一个这类天体诞生。
箭头所指为蟹状星云中央的脉冲星
蟹状星云及拍摄的脉冲星脉冲发射记录
第一个脉冲星是英国天文学家休伊什和贝尔在1967年发现的。他们在3.7米的波长上发现来自狐狸座的、具有极短周期的射电脉冲信号,脉冲周期是1.337秒。不久,又陆续在其他天区发现好几个这种快速脉冲的射电源,后来称为脉冲星。到1978年,发现的脉冲星已有300多个。脉冲星的一般符号是PSR。例如,第一个脉冲星就记为PSR1919+21。1919表示这个脉冲星的赤经是19小时19分;+21表示脉冲星的赤纬是北纬21度。
观测特点 ①周期性地发射短促的脉冲辐射。②脉冲周期很短。周期最短的为0.03秒,最长的为4.3秒,周期通常有非常缓慢的变长现象。大约每年增长百万分之
一秒到千亿分之一秒。③脉冲辐射多呈单峰或双峰形状,有的甚至多到五个峰。每个脉冲星的个别脉冲在脉冲形状和强度上会有变化,但几百个脉冲累加得到的平均脉冲轮廓(在脉冲期间辐射能量随时间的变化曲线)是稳定的。每个脉冲星有它特有的平均脉冲轮廓。附图分别绘出脉冲星 PSR0833-45、 PSR1133+16、PSR2045-16和PSR0525+21的平均脉冲轮廓。④脉冲辐射持续时间约为周期的百分之一到十分之几。⑤脉冲辐射是高度的线偏振或椭圆偏振。偏振度和偏振矢量的方向在脉冲期间通常是变化的。⑥绝大多数脉冲星只是在射电波段发出辐射。在射电波段的频谱分布一般呈简单的幂律谱,也有呈现为二段幂律谱合成的频谱。频谱指数通常是在3~1的范围。⑦有些脉冲星的个别脉冲会出现规则的向前或向后的漂移现象,有些脉冲星有时会呈现短缺脉冲现象。⑧个别脉冲星会有周期突然变化的现象。例如,近年来PSR0833-45的脉冲周期发生过三次突然变化(见脉冲星自转突快),PSR0531+21也有类似现象。⑨已发现的脉冲星都是银河系内的天体,其距离在100秒差距到2万秒差距之间。大多分布在银道面两旁,有向银道面聚集的倾向。
脉冲星的平均脉冲轮廓
脉冲星和中子星 现在已普遍认为,脉冲星是有很强磁场的快速自转着的中子星。脉冲周期对应于自转周期。脉冲星辐射的能量是靠消耗它自身的自转能而来的。随着脉冲星不断地辐射能量,它的自转逐渐变慢,这就是脉冲星周期缓慢变长的原因。利用脉冲星的周期变率的观测值,可以计算脉冲星的能量损失速率。脉冲星上的能量转化过程是十分复杂的,自转能首先转变为低频的磁偶极辐射(在脉冲星诞生的早期还有引力波),然后再转化为高能粒子的能量和电磁辐射的能量,目前,关于这种能量转化的机制还不十分清楚。观测表明,电磁辐射具有高度的方向性,就像灯塔光束一样,使得脉冲星自转一周就能给出对应的脉冲图样。
最著名的一颗脉冲星是蟹状星云的中心星PSR0531+21(或NP0532),它的周期是0.0331秒,是目前已知脉冲星中周期最短的。它在射电、红外线、可见光、 X射
线等波段都发出脉冲辐射。它的目视等是17等,距离约 6,300光年。蟹状星云的中心星据认是中国宋代记录的超新星(1054年金牛座“客星”)爆发后的残骸,蟹状星云是超新星爆发时抛出壳层的遗迹。脉冲星的年龄与由蟹状星云大小推算出的年龄相吻合,脉冲星能量损失与蟹状星云辐射能量的自洽,都有力地证实了这一点。
脉冲星的发现并被证认为中子星,是天体物理学和物理学的一项重大成就。这证实了三十多年前在理论上预言的、一种新型的、由超密态物质组成的恒星的存在。因此,脉冲星的发现被誉为二十世纪六十年代天文学的四大发现(脉冲星、类星体、微波背景辐射、星际分子)之一,是1974年度诺贝尔奖金的获奖项目。
1967年10月,剑桥大学卡文迪许实验室的休伊什教授的研究生——24岁的乔丝琳·贝尔小姐在检测射电望远镜收到的信号时无意之中发现了一些有规律的脉冲信号,这些脉冲信号的周期十分稳定,为1.337秒。起初她以为这是地外智慧生命“小绿人(LGM)”发来的信号,但在接下来不到半年的时间里,又陆陆续续发现了数个这样的脉冲信号。后来人们确认这是一类新的天体,并把它命名为脉冲星(Pulsar又称波霎)。脉冲星与类星体、宇宙微波背景辐射、星际有机分子一道,并称为20世纪60年代天文学“四大发现”。休伊什教授本人也因脉冲星的发现而荣获1974年的诺贝尔物理学奖,尽管人们对贝尔小姐未能获奖而颇有微词。
基本上我们相信脉冲星是大质量恒星在演化末期而形成的中子星。恒星在演化末期,缺乏继续燃烧所需要的核反应原料,内部辐射压降低,由于其自身的引力作用逐渐坍缩。质量不够大(约数倍太阳质量)的恒星坍缩后依靠电子的简并压与引力相抗衡,成为白矮星,而在质量比这还大的恒星里面,电子被压入原子核,形成中子,这时候恒星依靠中子的简并压与引力保持平衡。这叫做简并中子态的恒星,又叫中子星。质量更大的恒星则坍缩成黑洞。典型中子星的半径只有几公里到十几公里,质量却在1~2倍太阳质量之间,因此其密度相当大,可以达到每立方厘米上亿吨。由于恒星在坍缩的时候角动量守恒,坍缩成半径很小的中子星后自转速度往往非常快。又因为恒星磁场的磁轴与自转轴通常不平行,有的夹角甚至达到90度,而电磁波只能从磁极的位置发射出来,形成一个圆锥形的辐射区。因而中子星就好像是宇宙中快速旋转的灯塔,它发射的电磁波就好比是灯塔的光束。当光束扫射的方向恰好对着地球的时候,地球上的人们就观察到了急促而有规律的脉冲信号,这就是脉冲星。脉冲星的信号周期就是自转周期。
此为在持脉冲星便是中子星的证据中,其中一个便是我们在蟹状星云(M1)(中国宋朝所发现的超新星爆炸)确实也发现了一个周期约0.033s的波霎。
脉冲星靠消耗自转能而弥补辐射出去的能量,因而自转会逐渐放慢。但是这种变慢非常缓慢,以致于信号周期的精确度能够超过原子钟。而从脉冲星的周期就可以推测出其年龄的大小,周期越短的脉冲星越年轻。
20世纪80年代,由发现了一类所谓的毫秒脉冲星,它们的周期太短了,只有毫秒量级,之前的仪器虽然能探测到,但是很难将脉冲分辨出来。研究发现毫秒脉冲星并不年轻,这就对传统的“周期越短越年轻”的理论提出了挑战。进一步的研究发现毫秒脉冲星与密近双星有关。
1974年,美国的赫尔斯和泰勒发现了第一颗射电脉冲双星PSR1913+1,它们是两颗互相环绕的脉冲星,轨道周期很短,仅为7.75小时。轨道的偏心率为0.617。当两颗子星相互靠得很近时,极强的引力辐射会导致它们的距离愈加靠近,轨道周期会逐渐变短。通过精确地测量射电脉冲双星轨道周期的变化可以检测引力波的存在,验证广义相对论。赫尔斯和泰勒也因此获得1993年的诺贝尔物理学奖。
2003年4月,研究人员发现PSRJ0737-3039A的周期为22毫秒,并且在有规律地变化。人们认为这是一个罕见的双脉冲星系统,两颗子星都是脉冲星,并且辐射束都扫过地球。观测显示,这对双脉冲星系统的A星是一颗1.337太阳质量的毫秒脉冲星,周期22毫秒,B星是一颗1.251太阳质量的正常脉冲星,周期2.27秒。两颗子星相互环绕的轨道周期仅为2.4小时,轨道偏心率为0.088,平均速度达到0.1%光速。这个双脉冲星系统的发现为检测引力波的存在带来了新的希望。
人类发现的第一颗脉冲星:PSR1919+21,也就是上文贝尔小姐发现的那颗脉冲星,位于狐狸座方向,周期为1.33730119227秒。
人类发现的第一颗脉冲双星:PSR B1913+16
人类发现的第一颗毫秒脉冲星:PSR B1913+16
人类发现的第一颗带有行星系统的脉冲星:PSR B1257+12
人类发现的第一颗双脉冲星系统:PSRJ0737-3039
它是一种密度极大的天体,能以一定频率放射电磁脉冲.
脉冲星,就是旋转的中子星。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。2021年5月20日,国家天文台研究团队利用中国天眼FAST望远镜在观测中取得的重要进展,正式发布了201颗新脉冲星的发现。
脉冲星的发现者是().
脉冲星的发现者是乔瑟琳·贝尔和安东尼·休伊士什。
1968年,乔瑟林·贝尔和安东尼·休伊士什用剑桥的的射电望远镜阵列以外的发现了脉冲星。他们发现,这个天体很有规律的发射一断一续的脉冲,每经过1.337秒就重复一次。开始他们人外是地球上某个无线电台发射的讯号。这一假设很快被否定了,后来有怀疑是某个具有超级文明的星球发来的电报,到最后才肯定这种未知的脉冲信号来自一个未知的天体。
科学家们对这种脉冲现象进行了仔细认真的研究,确定这是脉冲星自转的结果。它每自转一周,我们就观测到一次它辐射的电磁波,因此就形成了一断一续的脉冲。
脉冲星指的是什么 脉冲星介绍
1、脉冲星指的是旋转的中子星。脉冲星又称为波霎,是中子星的一种,能够周期性发射脉冲信号,直径大多为10千米左右,自转极快。脉冲星在1967年首次被贝尔发现,因这种星体不断地发出电磁脉冲信号,因此命名为脉冲星。
2、中子星:是除黑洞外密度最大的星体,恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一,质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体,其密度比地球上任何物质密度大相当多倍。绝大多数的脉冲星都是中子星,但中子星不一定是脉冲星,有脉冲才算是脉冲星。
脉冲星是什么意思
当一个天体到了某个位置而产生的特殊现象叫作天文现象。我们常常看看到冲星冲日的报导,那么大家知道脉冲星是什么意思吗?接下来由本期星座知识来解答脉冲星的相关知识,一起来看看。什么是脉冲星脉冲星,就是旋转的中子星。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。脉冲星的定义脉冲星(Pulsar),又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体,直径大多为10千米左右,自转极快。人们最早认为恒星是永远不变的。而大多数恒星的变化过程是如此的漫长,人们也根本觉察不到。然而,并不是所有的恒星都那么平静。后来人们发现,有些恒星也很调皮,变化多端。于是,就给那些喜欢变化的恒星起了个专门的名字,叫变星。脉冲星发射的射电脉冲的周期性非常有规律。一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。据说,第一颗脉冲星就曾被叫做小绿人一号。经过几位天文学家一年的努力,终于证实,脉冲星就是正在快速自转的中子星。而且,正是由于它的快速自转而发出射电脉冲。蟹状星云脉冲星的X射线/可见光波段合成图像。正如地球有磁场一样,恒星也有磁场;也正如地球在自转一样,恒星也都在自转着;还跟地球一样,恒星的磁场方向不一定跟自转轴在同一直线上。这样,每当恒星自转一周,它的磁场就会在空间划一个圆,而且可能扫过地球一次。那么岂不是所有恒星都能发脉冲了?其实不然,要发出像脉冲星那样的射电信号,需要很强的磁场。而只有体积越小、质量越大的恒星,它的磁场才越强。而中子星正是这样高密度的恒星。另一方面,当恒星体积越大、质量越大,它的自转周期就越短。我们很熟悉的地球自转一周要二十四小时。而脉冲星的自转周期竟然小到0.0014秒!要达到这个速度,连白矮星都不行。这同样说明,只有高速旋转的中子星,才可能扮演脉冲星的角色。
脉冲星是什么 属于哪种天体
脉冲星,就是旋转的中子星。脉冲星是在1967年首次被发现的。脉冲星(Pulsar),又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体,直径大多为10千米左右,自转极快。
脉冲星属于什么天体脉冲星是中子天体。脉冲星指的是宇宙中能发出周期性电磁脉冲信号的大质量天体,它本身是中子星的一种,体积虽然不大,只有10到30公里的直径,但它们的自转速度很快,一秒钟可以转好多圈,有的甚至可以高达1000圈,而且其自转周期十分稳定,磁轴两极辐射出的电磁波就会周期性扫过地球而被我们的天文仪器检测到,因此我们才发现了它们。
脉冲星的脉冲强度和频率只有像中子星那样体积小、密度大、质量大的星体才能达到。这样,中子星才真正由假说成为事实。这真是上世纪天文学上的一件大事。因此,脉冲星的发现,被称为二十世纪六十年代的四大天文学重要发现之一。
脉冲星的特性是什么1、脉冲星由于是一种特殊的中子星,一颗典型的脉冲星质量介于太阳质量的1.35到2.1倍,半径则在10至20公里之间,可以想象,一个太阳这么大的天体压缩到10多公里后,其密度可以达到每立方厘米重1亿吨以上。
2、脉冲星在快速旋转,正是由于它的快速自转而发出射电脉冲。
3、由于脉冲星本身有很强的磁场,这个强磁场把脉冲星发出来的电磁辐射封闭起来,使中子星的辐射只能沿着磁轴(星体磁场的南北极)方向发出,就是从磁轴的两个方向发出。
4、脉冲星的自转轴与磁轴之间存在一个夹角,因此脉冲星在自转过程中,发出的圆锥形的辐射就周期性地扫过一片空间。
谁最先发现脉冲星最先发现脉冲星的是博内尔。脉冲星,就是旋转的中子星,因不断地发出电磁脉冲信号而得名。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。
因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。脉冲星的命名由脉冲星英文pulsar的缩写PSR加上其赤经赤纬坐标组成。如PSR B1937+21,1937是指该脉冲星位于赤经19 37 ,+21是指其位于赤纬+21°,B意味着赤经赤纬值是归算到历元1950年的值。
脉冲星的密度高达10亿吨立方厘米,这是真的吗?
只有10亿吨是不可能成为脉冲星的,脉冲星直径通常20公里左右,却有超过太阳的质量,密度可达每立方厘米10亿吨,这个数据来自观测,有误差但不会太大。
脉冲星是一类自转极快的中子星,以毫秒计算,可周期性地从两级向外辐射能量,只有被辐射的能量扫到的区域,才能观测到它的存在,至今科学家只观测到1600多颗脉冲星,直径在20千米左右。中子星的形成是由于超新星爆发后,恒星内部能量释放不足以支撑引力的收缩,体积急剧缩小,电子被压入质子成为中子,恒星的几乎所有物质都是以中子及其他高密度粒子形式存在。
原子的质量主要是原子核,原子核由中子和质子组成,原本只有原子体积的亿分之一,中子星的引力使得原子内部的空间全都用中子填满了,单个原子的质量就增加了亿倍,单位体积的中子星物质质量就非常的大。由于质量特别大,体积小,因此它们具有非常强的磁场,同时辐射着强大的能量,还会吸收伴星的物质,科学家可以根据它们周围天体运行轨道、射电信号和X射线数据,结合相对论理论来推测它们的质量。
脉冲星等致密天体的质量测量是在现有理论支持下计算出来的,肯定会有误差,不过可能不是把它们的质量估计大了,而是小了,致密天体由于强大的引力,会剥夺伴星的物质逐渐成长。
脉冲星其实就是一种中子星,它们的自转速度很快,自转周期十分稳定,它们在磁轴两极辐射出的电磁波会以一个非常稳定而且又短的周期扫过地球。既然是中子星的一种,这意味着脉冲星具有极高的密度,它们的密度可以达到每立方厘米数亿吨的程度,10亿吨/立方厘米可能高了一些。
中子星之所以拥有如此之高的密度,与其形成过程有关。中子星的前身是大质量恒星,其质量在太阳质量的8到20倍之间。大质量恒星在核聚变反应还能进行时,强大的辐射压可以支撑起恒星结构。但到了最后,核聚变反应产生的辐射压无法支撑自身重力时,核心部分就会被自身重力极端压缩,导致原子核外的电子直接被压缩到原子核中,并与质子发生中和,结果就产生了一种基本由中子构成的极端致密天体——中子星。
中子星的密度极高,对于一个质量与太阳相当的中子星,其半径仅有10公里。如此巨大的质量集中在如此小的空间中,使得中子星拥有十分惊人的密度。中子星的密度与原子核相当,平均密度可达5 10^17千克/立方米,即5亿吨/立方厘米。中子星的表面密度大约为10^9千克/立方米,即1吨/立方厘米,中心附近的密度则可达8 10^17千克/立方米,即8亿吨/立方厘米。
由于中子星十分致密,在其附近将会产生极端的引力场。当两颗中子星发生合并时,将会激发空间产生超强的引力波,并且还会合成出大量的金、铂等金属。天文学家在去年首次探测到了这种事件——GW170817,它发生在1.3亿光年之外。
脉冲星指的是宇宙中能发出周期性电磁脉冲信号的大质量天体,它本身是中子星的一种,体积虽然不大,只有10到30公里的直径,但它们的自转速度很快,一秒钟可以转好多圈,有的甚至可以高达1000圈,而且其自转周期十分稳定,磁轴两极辐射出的电磁波就会周期性扫过地球而被我们的天文仪器监测到,因此我们才发现了它们。
中子星是一种物质密度非常高的天体,一立方厘米的质量在8000万吨到20亿吨之间,这是由于中子星本身质量大小不同以及表面和核心密度不同的原因,它之所以密度如此之高,是因为它本身实际上就是中子集成的一个巨大原子核,和原子内部原子核的密度基本相等,但是由于质量巨大导致其本身引力场十分强大,所以它的密度甚至更高一些。
中子星都是由大质量恒星经过超新星爆发形成的,原始质量在8到30倍太阳质量的恒星到了晚年时期,当内部核聚变开始聚合成铁元素的时候就会发生超新星爆发,这个时候核聚变反应产生的辐射压无法支撑自身重力,导致星体的核心部分向中间塌陷,对外部的物质也会往里面坍缩,撞击的内部的核心上时,又会被反弹出去,因此其核心遭受的重力作用非常巨大,将原子中的电子都压缩到了原子核的质子中,于是就形成了中子,这时候恒星的中间就形成了中子星,而整个中子星就好像有无数个中子形成的巨大原子核。
不过中子星并非密度最高的天体,比它更高的还有夸克星和黑洞,夸克星是由于遭受的重力作用更大而导致中子也被压垮而融合到了一起,这基本可以理解为达到了夸克的级别,一个夸克星实际上就是一个巨大的中子,它的密度比中子星还大。
黑洞就更恐怖了,它的引力场连夸克也给压垮了,达到了一种我们还无法知晓的级别,而且黑洞的物质一般认为会聚集在奇点上,在这里,物质的密度大到了什么程度?我们还并不知道。
脉冲星就是中子星,中子星是由大质量恒星死之后留下的核心,这个核心由于质量巨大,所以引力已经把原子核压碎了,原子核中的中子就像仪仗队一样紧紧排列在一起,所以中子星的密度高达每立方厘米10亿吨。
我们都知道物体是由原子组成的,而原子内部是十分空旷的,如果把原子比做剧院,那么原子核就是剧院里的一颗核桃,围绕着原子核旋转的电子处于电子云状态之下。
所以说正常情况下的物体都是镂空结构,如果强行把构成地球的地球的原子和原子挤在一起形成中子星,那么地球的直径就只有22米,也就是说整个地球质量被强行压缩成了直径22米的圆球,那么这个圆球的密度肯定就高达每立方厘米10亿吨了。
而宇宙中有能力产生中子星的只有死亡后的恒星,恒星内部就是超高温和超高压环境,这样一来在大质量恒星死亡之后,其内核就会成为一个密度极高的中子星,这种中子星每秒最快能自转数百圈甚至上千圈,自转的同时还会发出稳定的电磁脉冲信号,科学家们一开始还以为这种信号是外星人发出来的。
中子星的密度其实并不是宇宙中最高的,理论上还存在一种叫作夸克星的天体,夸克星是指恒星的引力强大到把中子压碎然后由更小的夸克构成的天体,所以夸克星的体积比中子星更小而且密度更大。
如果引力强大到把夸克都压碎的话,夸克星就会变成黑洞。
脉冲星就是倾斜的自转磁中子星,中子星由中子构成的稳定星体,其密度可以高达10亿吨/立方厘米。这时星体的物质全部由简并的中子组成,中子简并可以抗衡巨大的引力,形成稳定的中子星。
中子星也是是大质量恒星演化路径上的一条,当核燃料耗尽恒星的残留铁核的质量大于钱德拉塞卡极限质量,也就是1.4倍太阳质量的时候,简并电子的压力已经无法足以对抗强大的引力,原子核外的电子被压入原子核内,与质子形成中子,原子核也完全瓦解,加速核心的塌缩,此时由中子简并的压力抗衡引力,形成稳定中子星体。
中子星半径一般在10千米左右,但质量在1.4至3倍太阳质量,所以其密度可以达到10亿吨/立方厘米。是除了黑洞之外,最致密的天体。脉冲星就是自转的磁中子星,它的磁场很强,沿着磁轴发射的辐射会随着中子星进行自转,就像灯塔发射的扫射光束一样,每自转一周,其辐射就扫过一次,这些稳定的脉冲周期就是中子星的自转周期。
我国在贵州建立有世界上最大口径的射电望远镜-天眼,它的主要科学任务之一就是发现脉冲星。利用它500米口径的球面天线,天眼投入使用2年间已经发现了44颗脉冲星,为星际导航,引力波探测提供了理想的工具。
欢迎关注量子实验室,评论里请留下您的见解。
答:的确是真的!一汤勺(脉冲星)中子星物质,就比整个珠穆朗玛峰还重;如果把地球压缩成典型的中子星物质,那么地球直径也就50米左右。
脉冲星
脉冲星是中子星的一种,因为中子星一般自转都很快,且磁场方向和自转轴不在一条直线上,所以中子星每自转一圈,磁场就会画一个圆;当中子星的磁场脉冲扫过地球时,就被称为脉冲星。
我们知道,普通物质由分子或者原子组成,比如水分子,氢气分子、铁原子、碳原子等等;无论固态、液态还是气态,分子之间都是存在距离的,这个距离会造成物质的热胀冷缩。
原子和中子
分子由原子组成,原子又由原子核与核外电子组成,高中知识学过,原子核直径其实只占了原子直径的百万分之一,说明核外电子与原子核之间还存在很大的间隙。
一般情况下,其他物质很难进入核外电子与原子核之间的空隙,但是对于一些极端情况,比如大质量恒星在超新星爆发时,会在爆炸中心产生极高的压力和温度,加上强大的万有引力作用,电子将坠入原子核与质子结合成中子。
就在一瞬间,恒星内核塌缩,大量原子塌缩成中子,电荷被中和,电磁力消失;邻近中子可以一个挨着一个,填充原来原子间的空隙,留下一个致密的中子星。
所以,中子星的密度,其实就相当于原子核的密度,氢原子核的直径在10^-15米数量级,氢原子质量大约1.66^-24克,算出来的原子核密度,大概就是每立方厘米千万吨至数亿吨的数量级。
典型中子星的密度为1~10亿吨每立方厘米,也就是一汤勺中子星物质,几乎比整个珠穆朗玛峰的质量还重!
在宇宙中,还存在更极端的天体,科学家奥本海默被誉为“原子弹之父”,奥本海默研究中子星性质时发现,当中子星的质量超过一定数值后,中子也将被万有引力“压碎”,形成密度更大的天体。
这个极限叫做奥本海默极限,估计在3倍太阳质量左右,目前天文学发现的所有中子星(或者脉冲星),其质量都在2倍太阳质量左右,没有超过奥本海默极限。
夸克星和黑洞
对于大于3倍太阳质量的中子星,将继续塌缩成夸克星(还未被天文学发现),夸克星的密度比中子星密度还高,但是夸克星不稳定,继续增加质量,将会塌缩成黑洞。
是的,脉冲星的密度确实能够达到这么大。
什么是脉冲星?
脉冲星是 1967 年被首次发现的,人们发现它会周期性的发出一种电波,科学家很疑惑甚至还以为是外星人发出的信号。
后来经过证实,脉冲星就是快速自转的中子星。因为只有中子星那样体积小,密度大,质量大的星体才能发出如此频率和强度的电波。所以 中子星的存在也因此被证实 。而脉冲星的发现也被称为 :二十世纪六十年代的四大天文重要发现之一。
所以 总结起来脉冲星一定是中子星,而中子星不一定是脉冲星。 而中子星的密度在8千万-20亿吨每立方厘米之多,所以 脉冲星也是可以达到10亿吨/立方厘米。
为什么脉冲星会发射脉冲
其实关于脉冲星为什么会发射脉冲科学界还没有定论,但最为流行的是 灯塔模型 。
其原理就像是船在海中航行,灯塔则总是亮着,但它却不停的做着规则运动,所以灯塔每转一圈,我们就能看到光一次。所以脉冲星也是如此,因为 中子星高速自转自身强大的磁场导致辐射只能沿着磁轴的方向,所以我们就会发现周期性的脉冲信号。
实际上是中子星,根据质量密度大小不同,中子星上面物质每立方厘米在1~20亿吨重之间。
脉冲星是中子星的一种,是会旋转的中子星,而且其能量射线扫射到地球,被人类所捕捉,就成了脉冲星了。
中子星是大质量天体死亡后留下的残骸,这个残骸只有10~20公里直径,质量却有1.4~2个太阳质量。如果数学还好的人随便算一下,凭着种密度,1立方厘米质量有多大不就出来了。
一般来说,大于7倍太阳质量的恒星死亡时会发生超新星大爆炸,抛弃大部分质量,中间核心部分急剧收缩,最终就会成为一个中子简并态的星体,就是中子星。
如果这个中子星的质量大于太阳质量的2~3倍,就会继续坍缩,直到缩小到史瓦西半径以下,就会无限坍缩成一个奇点,变成一个黑洞。
中子星所谓中子简并态,是指中子星整个星球都由中子组成。
这是因为巨大的压力把原子压碎了,电子被压缩到了原子核里,与质子中和成了中子,大家密密匝匝的挤在一起,整个星球就成了一个由中子组成的巨大原子核。
我们知道地球上所有的物体都是用原子组成,而原子是由电子和原子核组成,电子云包裹着原子核,电子与原子核之间有巨大的空间。
原子核的体积只是原子体积的几千亿分之一,却占有原子质量的99.96%。所以实际上我们看到的所有物质从微观上看都是一个蓬松的东西,如果把这个蓬松的东西打碎压实,压成了原子核,密度和比重就增加了几千亿倍。
中子星就是这样把原子核压实为一锅中子汤的物质,所以它的密度和重力有多大就可想而知了。
老有人说,科学界说中子星上的物质这么重,是凭空估计,谁也没有去取一小块来称过,所以不可相信。
科学界观测天体可不是像一些人这么胡思乱想的,科学家有很多方法来测算这个天体的数据,比如引力扰动、体积大小、光谱能量等等,中子星的性质就是这样测算出来的。人类发现的中子星已经有数千颗了,经过用科学的方法,全世界科学家们无数次的验证,得出的这些数据是可信的。
当然如果能够去中子星上取一小块物质称一下,就会更有说服力了。但这是完全不可能实现的,就比如测量钢水温度有一两千度,用遥感温度计测,你就不信,非要用手去摸一下才能算数,这么可能呢。
不要说每一颗中子星距离我们都在几百上千光年以上,人类迄今连1光年的太阳系也无法走出,而且即使能够到达,中子星也无法接近和登陆。
中子星不但物质比重大的出奇,表面重力达到一半光速,也就是每秒15万公里才能逃逸,除了光,掉在上面的东西就永远也出不来了。
新中子星温度奇高,中心可达万亿度,表面可达上亿度;且旋转极快,快的每秒达上千转;中子星的磁场达到万亿到几十万亿高斯,太阳才几千高斯,地球才0.7个高斯。
这样一个极端天体别说到上面去,就是靠近也不得了了。一个70公斤的人如果进入了中子星的引力范围,被拽了下去,其摔落下去的冲击能量相当于2亿吨TNT炸药爆炸威力,也就是10000多颗广岛原子弹爆炸当量。谁敢去谁去充当这个炸弹吧,无需研究就能得到人类最大的氢弹了。
即使一切都不在话下,有人硬是有本事从中子星上盗取了一小匙物质,也不能离开中子星。
如这个傻蛋乘坐亚光速飞船逃离,速度在每秒15万公里以上,是能够摆脱中子星引力的。但那一小勺物质一离开中子星强大的压力约束,立刻就膨胀了,爆炸的威力决不亚于若干颗伊万大氢弹,那傻蛋会和飞船一起,被那一小匙物质崩爆得万马分尸,渣子都不剩了。
因为被强大压力禁锢着得物质一旦被压力释放,就会瞬间恢复原子状态,膨胀几千亿倍。
当然,什么飞船呀、傻蛋呀,一到中子星就被压缩成中子了,要知道一小匙物质可是地球上全人类的重量!所以永远不要试图去做一些违背科学常识的事情。
现在回过头来说说脉冲星与中子星的区别。
前面说了脉冲星就是中子星的一种。一般中子星都保留着原来恒星的角动量,就像冰上芭蕾旋转时身体一缩小,就滴溜溜的成了陀螺,缩小后的中子星也就转得飞快了。
中子星自转轴与磁场方向不在一条直线上,这样从磁极发出的强烈能量射线脉冲就会像灯塔一样的扫射太空,当这个脉冲扫向地球时,被人类发现和捕捉,人类就把这种星体叫做脉冲星。
现在人类已经发现了2000多颗脉冲星。脉冲星很有规律的脉冲扫射,真的就像宇宙灯塔,成为了人类太空飞行定位和导航的坐标。
美国NASA利用脉冲星这种精准定位特性,锁定了4颗毫秒级脉冲星,作为精准的信号源,研发了一款宇宙版GPS导航系统。
这种导航系统可以为跨光年旅行导航,在光年尺度精准度可以达到公里级,而且还在向米级努力。
这可比地球上瞄准月球上一只蚊子的准确度强多了。科学界评价,有了这个系统,就有了人类打开星际旅行之门的钥匙。
时空通讯观点,欢迎点评讨论。
原创作品,版权所有,抄袭可耻,侵权必究。请理解支持,谢谢。
按照目前的理论来说应该是真的。需要注意的是,不光是理论,实际观测结果也能够证实这种说法的正确性,因此就我个人认为这种说法应该是没什么问题的。
说到脉冲星,可能好多人都感觉奇奇怪怪的没听过,但脉冲星的另一个名字相信大家都有所耳闻了。脉冲星的另一个名称,就是大名鼎鼎的中子星。根据科学家的计算,当一颗恒星的质量在太阳的8 20倍之间的时候,演化的最终结果就是形成一颗中子星。小于这个数只能形成白矮星,大于这个数又只能形成黑洞。
中子星是一种十分奇特的天体,它的形成过程十分复杂。简单来说,由于巨大的引力,原子被压碎,核外的自由电子被迫压进了质子,形成了中子。所有的中子都被压到了一起,直到和中子简并压平衡,最终形成的一种稳定的天体。这样看来,中子星的密度应该是和原子核的密度类似了。
而原子核的密度有多大呢?这么说吧,原子核和原子的大小差了五到六个数量级。这只是尺寸差异,换算成体积差异就更大了。假如一个原子有一个 体育 场那么大,那原子核大概和 体育 场中央的一只蚂蚁差不多吧。所以,我们平时能够看到的、摸到的,实际上绝大部分都是一片虚无。假如把地球完全压缩成中子,那大小只有二十多米。这样的物质组成,密度达到10亿吨每立方厘米,很奇怪吗?
所以不管是理论计算,还是天文学上对引力波、脉冲星频率等的观测,都证实了这种星体能够达到这样的密度和质量。毕竟质量不足的话根本无法形成传递整个宇宙的引力波,而体积太大的话,在脉冲星那样高的自转频率下,会瞬间解体。因此,中子星的存在以及它奇特的性质基本上是板上钉钉的事了。
脉冲星其实就是中子星,是恒星演化到主星序以后的天体种类之一。
根据恒星演化的理论,如果一颗恒星在主星序阶段的质量在太阳质量的8倍以上时,那么就会演化成中子星,在8倍质量以下,只能演化成白矮星。
我们知道,恒星的演化路线基本上就是以质量的大小来区分的,不同的质量导致了最终的演化路线不同。如果恒星的质量在太阳质量的8倍以上,上限差不多是30倍,更大的质量会演化为黑洞。
在这个范围内,恒星在主序星末期会充分的进行聚变反应,从而导致更高的温顿和更大的压力。因此,当恒星发生爆炸时,产生的能量也更大,因此产生的绝大压力会导致核心物质中子化。因为只有中子简并的力量才能抵挡住如此巨大的压力,最终形成了中子星。
恒星爆炸时外层的物质都被抛到了太空中,形成了星云,而核心被大大的压缩了,因此获得了极高密度的中子物质。中子星的半径只有10到30公里大小,但是其质量却比太阳还要大,标准的中子星质量在1.35到2.1倍的太阳质量。如此大的质量被压缩到这么小的区域内,其密度当然是非常之大了,根据计算,中子星的密度达到每立方厘米的物质8x10^13~2x10^15克,所以,题目中说的每立方厘米10亿吨也是基本正确的。
最早提出中子星概念的是苏联物理学家朗道,而正式被发现是在1967年。目前人们对中子星的认识越来越详细,未来肯定还会进一步的研究中子星的更多秘密
脉冲星是哪种天体
脉冲星简介
脉冲星就是旋转的中子星,因不断地发出电磁脉冲信号而得名。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。
经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。
脉冲星的磁场
脉冲星在旋转过程中,它的磁场会使它形成强烈的电波向外界辐射,脉冲星就像是宇宙中的灯塔,源源不断地向外界发射电磁波,这种电磁波是间歇性的,而且有着很强的规律性。正是由于其强烈的规律性,脉冲星被认为是宇宙中最精确的时钟。
脉冲星是哪种天体?
脉冲星是中子天体。
脉冲星是在1967年首次被发现的,当时还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。
脉冲星又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体,直径大多为10千米左右,自转极快。人们最早认为恒星是永远不变的,而大多数恒星的变化过程是如此的漫长,人们也根本觉察不到。然而,并不是所有的恒星都那么平静。后来人们发现,有些恒星也很“调皮”,变化多端。
研究意义
由于脉冲星是在蹋缩的超新星的残骸中发现的,它们有助于我们了解星体蹋缩时发生了什么情况,还可通过对它们的研究揭示宇宙诞生和演变的奥秘。而且,随着时间的推移,脉冲星的行为方式也会发生多种多样的变化。
每颗脉冲星的周期并非恒定如一,我们能探测到的是中子星的旋转能(电磁辐射的来源)。每当脉冲星发射电磁辐射后,它就会失去一部分旋转能,且转速下降。通过月复一月,年复一年地测量它们的旋转周期,我们可以精确地推断出它们的转速降低了多少、在演变过程中能量损失了多少,甚至还能够推断出在因转速太低而无法发光之前,它们还能生存多长时间。
脉冲星指的是什么?
脉冲星(英语:Pulsar)是高度磁化的旋转致密星(通常是中子星,但也有白矮星),其磁极发出电磁辐射束。
仅当发射光束指向地球时才可以观察到此辐射(类似于仅当将光指向观察者的方向时才可以看到灯塔的方式),并且该辐射是发射的脉冲形式的原因。 中子星非常密集,具有短的规则旋转周期。
中子星非常密集,具有短的规则旋转周期。 对于单个脉冲星,这会在脉冲之间产生非常精确的间隔,范围从毫秒到秒。 脉冲星是超高能宇宙射线源的候选者之一。
脉冲星的周期使它们成为天文学家非常有用的工具。在双星中子星系统中对脉冲星的观测被用来间接确认引力辐射的存在。 在脉冲星PSR B1257+12附近发现了第一批太阳系外行星。
2021年12月20日,2021年度FAST运行和发展中心年终总结会在贵州省平塘县中国天眼(FAST)观测基地举行。FAST已发现509颗脉冲星,是世界上所有其他望远镜发现脉冲星总数的4倍以上。
脉冲双星
1974年,美国的拉塞尔·赫尔斯和约瑟夫·泰勒发现了第一个脉冲双星系统。它由一颗脉冲星,PSR 1913+16,与一颗中子星构成,轨道周期很短,仅为7.75小时。轨道的偏心率为0.617。
当两颗子星相互靠得很近时,极强的引力辐射会导致它们的距离愈加靠近,轨道周期会逐渐变短。通过精确地测量射电脉冲双星轨道周期的变化可以检测引力波的存在,验证广义相对论。赫尔斯和泰勒也因此获得1993年的诺贝尔物理学奖。
2003年4月,研究人员发现PSRJ0737-3039A的周期为22毫秒,并且在有规律地变化。
人们认为这是一个罕见的双脉冲星系统,两颗子星都是脉冲星,并且辐射束都扫过地球。观测显示,这对双脉冲星系统的A星是一颗1.337太阳质量的毫秒脉冲星,周期22毫秒,B星是一颗1.251太阳质量的正常脉冲星,周期2.27秒。
两颗子星相互环绕的轨道周期仅为2.4小时,轨道偏心率为0.088,平均速度达到0.1%光速。这个双脉冲星系统的发现为检测引力波的存在带来了新的希望。
脉冲星是什么?
按照广义相对论爱因斯坦曾预言了三个重要效应下面什么不是爱因斯坦所预言的是C
A.光线在引力场中的偏转
B.水星轨道近日点的进动
C.中子星的周期性脉冲辐射
D.光谱线的红向移动
脉冲星(Pulsar),就是旋转的中子星,因不断地发出电磁脉冲信号而得名。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。
因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。2021年5月20日,国家天文台研究团队利用中国天眼FAST望远镜在观测中取得的重要进展,正式发布了201颗新脉冲星的发现。
2021年12月20日,2021年度FAST运行和发展中心年终总结会在贵州省平塘县中国天眼(FAST)观测基地举行。FAST已发现509颗脉冲星,是世界上所有其他望远镜发现脉冲星总数的4倍以上。截至2022年8月,FAST已发现的脉冲星超660颗
脉冲星发射的射电脉冲的周期性非常有规律。一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。据说,第一颗脉冲星就曾被叫做“小绿人一号”。经过几位天文学家一年的努力,终于证实,脉冲星就是正在快速自转的中子星。
而且,正是由于它的快速自转而发出射电脉冲。正如地球有磁场一样,恒星也有磁场;也正如地球在自转一样,恒星也都在自转着;还跟地球一样,恒星的磁场方向不一定跟自转轴在同一直线上。
这样,每当恒星自转一周,它的磁场就会在空间划一个圆,而且可能扫过地球一次。那么岂不是所有恒星都能发脉冲了?其实不然,要发出像脉冲星那样的射电信号,需要很强的磁场。而只有体积越小、质量越大的恒星,它的磁场才越强。而中子星正是这样高密度的恒星。
另一方面,当恒星体积越小、质量越大,它的自转周期就越短。我们很熟悉的地球自转一周要二十四小时。而脉冲星的自转周期竟然小到0.0014秒!要达到这个速度,连白矮星都不行。这同样说明,只有高速旋转的中子星,才可能扮演脉冲星的角色。